Презентация диоды. Презентация "Электронно-дырочный переход. Транзистор" презентация к уроку по физике (10 класс) на тему. Обратные связи структурная схема ос

Слайд 1

Слайд 2

Проводники, диэлектрики и полупроводники. Собственная (электронно-дырочная) электрическая проводимость. Примесная (электронно-дырочная) электрическая проводимость. Электронно-дырочный переход. Контакт двух полупроводников с р- и n- проводимостью. P- n переход и его свойство. Строение полупроводникового диода. Вольт - амперная характеристика полупроводникового диода. * * * * Применение полупроводников (выпрямление переменного тока)*. Однополупериодное выпрямление переменного тока.* Двухполупериодное выпрямление переменного тока.* Светодиоды*.

Слайд 3

В данную версию презентации включены 25 слайдов из 40, просмотр некоторых из них ограничен. Презентация носит демонстрационный характер. Полная версии презентации содержит практически весь материал по теме «Полупроводники», а также дополнительный материал, который следует более детально изучить в профильном физико-математическом классе. Полную версию презентации можно скачать на сайте автора LSLSm.narod.ru.

Слайд 4

Непроводники (диэлектрики)

Проводники

Прежде всего поясним само понятие – полупроводник.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Тела и вещества, в которых можно создавать электрический ток, называют проводниками.

Тела и вещества, в которых нельзя создавать электрический ток, называют непроводниками тока.

Металлы, уголь, кислоты, растворы солей, щелочи, живые организмы и многие другие тела и вещества.

Воздух, стекло, парафин, слюда, лаки, фарфор, резина, пластмассы, различные смолы, маслянистые жидкости, сухое дерево, сухая ткань, бумага и другие вещества.

Полупроводники по электропроводности занимают промежуточное место между проводниками и непроводниками.

Слайд 5

Бор B, углерод C, кремний Si фосфор Р, сера S, германий Ge, мышьяк As, селен Se, олово Sn, сурьма Sb, теллур Te и йод I.

Полупроводники - это ряд элементов таблицы Менделеева, большинство минералов, различные окислы, сульфиды, теллуриды и другие химические соединения.

Слайд 6

Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, вращающихся вокруг ядра по стабильным орбитам.

Электронная оболочка атома германия состоит из 32 электронов, четыре из которых вращаются по его внешней орбите.

Электронная оболочка атома

Ядро атома

Сколько электронов у атома германия?

Четыре внешних электрона, называемые валентными, существенным образом определяют атома германия. Атом германия стремится приобрести устойчивую структуру, присущую атомам инертных газов и отличающуюся тем, что на внешней их орбите находится всегда строго определенное число электронов (например, 2, 8, 18 и т. д.).Таким образом, для приобретения подобной структуры атому германия потребовалось бы принять на внешнюю орбиту еще четыре электрона.

Слайд 7

Слайд 8

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок.

ρмет = f(Т) ρполуп = f(Т)

Повысим температуру полупроводника.

Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При увеличении температуры полупроводника в единицу времени образуется большее количество электронно-дырочных пар.

Зависимость удельного сопротивления ρ металла от абсолютной температуры T

Собственная электрическая проводимость

Слайд 9

Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников и поэтому называется собственной электрической проводимостью.

Примесная (электронно-дырочная) электрическая проводимость.

Проводимость полупроводников при наличии примесей называется примесной проводимостью.

Примесная (электронная) электрическая проводимость.

Примесная (дырочная) электрическая проводимость.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примесными центрами могут быть: атомы или ионы химических элементов, внедренные в решетку полупроводника; избыточные атомы или ионы, внедренные в междоузлия решетки; различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Слайд 10

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

Дальнейшее содержание слайда в полной версии презентации.

Слайд 11

Слайд 12

Слайд 14

Слайд 15

Слайд 16

Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Изображают полупроводниковые диоды на электрических схемах в виде треугольника и отрезка, проведенного через одну из его вершин параллельно противолежащей стороне. В зависимости от назначения диода его обозначение может содержать дополнительные символы. В любом случае острая вершина треугольника указывает на направление протекания прямого тока через диод. Треугольник соответствует р-области и называется иногда анодом, или эмиттером, а прямолинейный отрезок - n-области и называется катодом, или базой.

База Б Эмиттер Э

Слайд 17

Слайд 18

По конструкции полупроводниковые диоды могут быть плоскостными или точечными.

Как правило, диоды изготавливают из кристалла германия или кремния, с проводимостью n-типа. В одну из поверхностей кристалла вплавляют каплю индия. Вследствие диффузии атомов индия в глубь второго кристалла, в нём образуется область p-типа. Остальная часть кристалла по-прежнему имеет проводимость n-типа. Между ними и возникает p-n - переход. Для предотвращения воздействия влаги и света, а также для прочности кристалл заключают в корпус, снабжая контактами. Германиевые и кремниевые диоды могут работать в разных интервалах температур и с токами различной силы и напряжения.

Содержание.1.
2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
ВАХ.
Коэффициент выпрямления.
Мостовые схемы включения диодов.
Диоды Шотки.

Определение.

Выпрямительный диод - это
полупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.

Область применения.

Выпрямительные диоды применяются в
цепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.

Принцип работы выпрямительного диода

Принцип работы этого устройства основывается на
особенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств и их обозначение.

По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение -
Si) и германиевые (обозначение - Ge). У первых рабочая температура выше.
Преимущество вторых - малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
- Первый элемент – обозначение материала из которого он выполнен;
- Второй определяет подкласс;
- Третий обозначает рабочие возможности;
- Четвертый является порядковым номером разработки;
- Пятый – обозначение разбраковки по параметрам.

Параметры выпрямительных диодов.

Частотный диапазон выпрямительных диодов
невелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А < Iпр.ср. < 10 А) и мощные
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.

Параметры выпрямительных диодов.

В состав параметров диодов входят
диапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ)
выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.

Коэффициент выпрямления

Коэффициент выпрямления можно рассчитать.
Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.

Мостовые схемы включения диодов.

Дио́дный мо́ст - электрическая схема,
предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем:
1. Однофазную
2. Трехфазную.

Однофазная мостовая схема.

На вход схемы подается переменное напряжение (для простоты будем
рассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны

результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе.
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление

Трехфазная мостовая схема.

В схеме трехфазного выпрямительного моста в результате
получается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе.

Диоды Шотки

Диоды Шоттки получают, используя переход металл-полупроводник.
При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника.
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного

‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт


стабилитрона
7

Стабилизатор напряжения на основе стабилитрона и ВАХ стабилитронов 1-КС133А, 2-КС156А,3-КС182Ж, 4-КС212Ж

Стабилизатор напряжения на основе
стабилитрона и ВАХ стабилитронов 1-КС133А, 2КС156А,3-КС182Ж, 4-КС212Ж
Степанов Константин Сергеевич

Вольтамперные характеристики
1- КС133А, 2-КС156А, 3-КС182Ж, 4-КС212Ж
9
Степанов Константин Сергеевич

Варикап: обозначение и его вах
Максимальная емкость варикапа
составляет 5-300 пФ
10
Степанов Константин Сергеевич

Степанов Константин Сергеевич

ПРИМЕНЕНИЕ ДИОДОВ

В электротехнике:
1) выпрямительные устройства,
2) защитные устройства.
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Работа однополупериодного выпрямителя

Напряжение на выходе выпрямителя


u (t) = u (t) - u (t),
В виде среднего значения –
U = Um/π,


нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Однофазный двухполупериодный выпрямитель
со средней точкой
Степанов Константин Сергеевич

Однофазный двухполупериодный выпрямитель со средней точкой

Степанов Константин Сергеевич

Работа двухполупериодного выпрямителя


также определяется по второму закону
Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - u (t),
В виде действующего значения –
U = 2Um/π
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Однофазный мостовой выпрямитель

Степанов Константин Сергеевич

Работа двухполупериодного мостового выпрямителя

В этой схеме напряжение на выходе
определяется по второму закону Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - 2u (t),
В виде действующего значения –
U = 2Um/π,
при игнорировании падения напряжения на
диодах в виду их малой величины.
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Частота пульсаций
f1п = 3 fс
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Трехфазная мостовая схема управления

Постоянная составляющая в этой схеме
достаточно велика
m
, тогда Ud 0 =0,955Uл m ,
U 2 U Sin
d0
2
m
где: U2 – действующее значение линейного
напряжения на входе выпрямителя,
m – число фаз выпрямителя.
Uл m - амплитудное значение линейного
напряжения
Амплитуды пульсаций гармоник – малы,
а частота пульсаций их велика
Um1 = 0,055Uл m (частота f1п = 6 fс)
Um2 = 0,013Uл m (частота f2п = 12 fс)
Степанов Константин Сергеевич

СЕТЕВЫЕ ФИЛЬТРЫ

Емкостные (С – фильтры)
Индуктивные (L – фильтры)
LC - фильтры
Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Биполярные транзисторы
Биполярным транзистором
называется полупроводниковый
прибор с двумя p-n-переходами.
Он имеет трехслойную структуру
n-p-n или p-n-p-типа
33
Степанов Константин Сергеевич

Структура и обозначение
биполярного транзистора
34
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Структура биполярного транзистора

Степанов Константин Сергеевич

Режимы работы транзистора
Различают следующие режимы транзистора:
1)режим отсечки токов (режим закрытого
транзистора), когда оба перехода смещены в
обратном направлении (закрыты); 2)режим
насыщения (режим открытого транзистора) ,
когда оба перехода смещены в прямом
направлении, токи в транзисторах максимальны и
не зависят от его параметров: 3)активный режим,
когда эмиттерный переход смещен в прямом
направлении, коллекторный - в обратном.
37
Степанов Константин Сергеевич

Схема с общей базой

Степанов Константин Сергеевич

Схема с общей базой и её ВАХ
39
Степанов Константин Сергеевич

Схема с общим эмиттером (ОЭ)

Степанов Константин Сергеевич

Схема с общим коллектором (ОК)

Степанов Константин Сергеевич

Схема с ОЭ(а), её ВАХ и схема с ОК(б)

Степанов Константин Сергеевич

Характеристики и эквивалентные схемы транзисторов

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Осциллограммы на входе и выходе усилителя с ОЭ

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Тиристоры

Многослойные структуры с тремя p-nпереходами называют тиристорами.
Тиристоры с двумя выводами
(двухэлектродные) называются
динисторами,
с тремя (трехэлектродные) -
тринисторами.
Степанов Константин Сергеевич

Свойства тиристоров

Основным свойством является
способность находиться в двух
состояниях устойчивого равновесия:
максимально открытом, и
максимально закрытом.
Степанов Константин Сергеевич

Свойства тиристоров

Включать тиристоры можно
импульсами малой мощности по цепи
управления.
Выключать – сменой полярности
напряжения силовой цепи или
уменьшением анодного тока до
значения ниже тока удержания.
Степанов Константин Сергеевич

Применение тиристоров

По этой причине тиристоры относят к
классу переключающих
полупроводниковых приборов, главным
применением которых является
бесконтактная коммутация
электрических цепей.
Степанов Константин Сергеевич

Структура, обозначение и ВАХ динистора.

Степанов Константин Сергеевич

При прямом включении динистора источник
питания En смещает p-n-переходы П1 и П3 в
прямом направлении, а П2 - в обратном,
динистор находится в закрытом состоянии и
все приложенное к нему напряжение падает
на переходе П2. Ток прибора определяется
током утечки Iут, значение которого
находится в пределах от сотых долей
микроампера до нескольких микроампер
(участок ОА). Дифференциальное
u
сопротивление динистора Rдиф = l на участке
ОА положительно и достаточно велико. Его
значение может достигать нескольких сотен
мегаом. На участке АБ Rдиф <0 Условное
обозначение динистора показано на рис.б.
Степанов Константин Сергеевич

Структура тиристора

Степанов Константин Сергеевич

Обозначение тиристора

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Условия включения тиристора

1. Прямое напряжение на тиристоре
(анод + , катод -).
2. Импульс управления, открывающий
тиристор, должен быть достаточной
мощности.
3. Сопротивление нагрузки должно
быть меньше критического
(Rкр = Uмакс/Iуд).
Степанов Константин Сергеевич

Полевые транзисторы
60
Степанов Константин Сергеевич

Полевые (униполярные) транзисторы

Степанов Константин Сергеевич

Полевой транзистор с изолированным затвором

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ

Воздействие причины на следствие,
вызвавшее эту причину, называется
обратной связью.
Обратная связь, усиливающая

положительной (ПОС).
Обратная связь, ослабляющая
воздействие следствия, называется
отрицательной (ООС).
Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ структурная схема ОС

Степанов Константин Сергеевич

Последовательная ОС по току

Степанов Константин Сергеевич

Последовательная ОС по току

Коэффициент передачи усилителя в
U вых
направлении стрелки
K
U вх
Коэффициент передачи обратной
связи в направлении стрелки
U ос
U вых
Степанов Константин Сергеевич

Последовательная ОС по току

β показывает какая часть выходного
напряжения передаётся на вход.
Обычно
1
U вх U вх U ос U вх U вых
U вых KU вх K (U вх U вых)
Степанов Константин Сергеевич

Последовательная ОС по току

Следовательно
Тогда
K
K
1 K
U вых
K
K KK
U вх
U ос
U вых Z н
K
1

K
1 K
Степанов Константин Сергеевич

Последовательная ОС по току

Входное сопротивление
Так как в схеме
Тогда
Z вх (1 K) Z вх
U ос (I вых I вх)
U вх U вх (I вых I вх)
Z вх Z вх (1 K I)
Z вых (1 K в)
Z вых
Степанов Константин Сергеевич

Последовательная ОС по току

Где KI - коэффициент усиления тока. Он
должен быть меньше нуля, т.е. усилитель
должен быть инвертирующий.
K в Zвх * Kв /(Rг Zвх)
При ООС K в <0
Применяется тогда, когда нужно иметь
большое Zвых. Тогда такой усилитель
эквивалентен генератору тока. При
глубокой ООС справедливо
>>Zвых
Z вых
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Последовательная ОС по напряжению

Последовательная ОС
напряжению
по
Увеличивает входное и уменьшает
выходное сопротивление
Z вых
Z вых
1 K в
Z вх
Rг Z вх
где Кв – коэффициент передачи
усилителя в режиме холостого хода
Эмиттерный повторитель – яркий
пример Последовательной ООС по
напряжению
Степанов Константин Сергеевич

Параллельная ООС по току

Параллельная
Степанов Константин Сергеевич
ООС по току

Параллельная ООС понапряжению

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические элементы - устройства,
предназначенные для обработки
информации в цифровой форме
(последовательности сигналов высокого -
«1» и низкого - «0» уровней в двоичной
логике, последовательность "0", "1" и "2" в
троичной логике, последовательности "0",
"1", "2", "3", "4", "5", "6", "7", "8"и "9" в
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Физически, логические элементы
могут быть выполнены
механическими,
электромеханическими (на
электромагнитных реле),
электронными (на диодах и
транзисторах), пневматическими,
гидравлическими, оптическими и др.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

После доказательства в 1946 г. теоремы
Джона фон Неймана о экономичности
показательных позиционных систем
счисления стало известно о
преимуществах двоичной и троичной
систем счисления по сравнению с
десятичной системой счисления.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Двоичность и троичность позволяет
значительно сократить количество
операций и элементов, выполняющих
эту обработку, по сравнению с
десятичными логическими элементами.
Логические элементы выполняют
логическую функцию (операцию) с
входными сигналами (операндами,
данными).
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические операции с одним
операндом называются унарными, с
двумя - бинарными, с тремя -
тернарными (триарными,
тринарными) и т. д.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Из возможных унарных операций с
унарным выходом интерес для
реализации представляют операции
отрицания и повторения, причём,
операция отрицания имеет большую
значимость, чем операция повторения, Степанов Константин СергеевичA Мнемоническое правило Для эквивалентности с любым

На выходе будет:

действует четное количество «1»,

действует нечетное количество «1»,
Степанов Константин Сергеевич

Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

A
Степанов Константин Сергеевич
0
0
1
1
B
0
1
0
1
f(AB)
0
1
1
0

Мнемоническое правило

Для суммы по модулю 2 с любым
количеством входов звучит так:
На выходе будет:
"1" тогда и только тогда, когда на входа
действует нечётное количество «1»,
"0" тогда и только тогда, когда на входа
действует чётное количество «1»,
Степанов Константин Сергеевич

Благодарю за внимание
Степанов Константин Сергеевич

Презентация по теме: «Полупроводниковые диоды» Выполнили: Бармин Р.А. Гельзин И.Е. Полупроводниковый диод – это нелинейный электронный прибор с двумя выводами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольт-амперной характеристики свойства полупроводниковых диодов бывают различными. Мы рассмотрим следующие типы диодов: выпрямительные диоды на основе p-n перехода стабилитроны варикапы, туннельные и обращенные диоды. J J s (e VG 1) Выпрямительный диод на основе p-n перехода Основу выпрямительного диода составляет обычный электронно дырочный переход, вольт-амперная характеристика такого диода имеет ярко выраженную нелинейность. В прямом смещении ток диода инжекционный, большой по величине и представляет собой диффузионную компоненту тока основных носителей. При обратном смещении ток диода маленький по величине и представляет собой дрейфовую компоненту тока неосновных носителей. В состоянии равновесия суммарный ток, обусловленный диффузионными и дрейфовыми токами электронов и дырок, равен нулю. Рис. Параметры полупроводникового диода: а) вольт-амперная характеристика; б) конструкция корпуса ВАХ описывается уравнением J J s (e VG 1) Выпрямление в диоде Одним из главных свойств полупроводникового диода на основе p-n перехода является резкая асимметрия вольт-амперной характеристики: высокая проводимость при прямом смещении и низкая при обратном. Это свойство диода используется в выпрямительных диодах. На рисунке приведена схема, иллюстрирующая выпрямление переменного тока в диоде. - Коэффициент выпрямления идеального диода на основе p-n перехода. Характеристическое сопротивление Различают два вида характеристического сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD. Дифференциальное сопротивление определяется как Сопротивление по постоянному току RD U I U I 0 (e U 1) На прямом участке вольт-амперной характеристики сопротивление по постоянному току больше, чем дифференциальное сопротивление RD > rD, а на обратном участке – меньше RD < rD. Стабилитроны Стабилитрон - это полупроводниковый диод, вольт-амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт-амперной характеристики. ВАХ стабилитрона имеет вид, представленный на рисунке При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф 250 Ом. Основное назначение стабилитрона – стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом. Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, – лавинный и туннельный пробой p-n перехода. Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб < 5 В. Для стабилитронов с лавинным механизмом пробоя напряжение стабилизации обычно имеет большие значения и составляет величину более 8 вольт: Uстаб > 8 В. Варикапы Варикап - полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др. При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь nобласти, в результате чего происходит расширение обеднённой области p-n перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется. Туннельным диодом называют полупроводниковый диод на основе p+-n+ перехода с сильнолегированными областями, на прямом участке вольтамперной характеристики которого наблюдается n-образная зависимость тока от напряжения. В полупроводнике n+-типа все состояния в зоне проводимости вплоть до уровня Ферми заняты электронами, а в полупроводнике p+-типа – дырками. Зонная диаграмма p+-n+ перехода, образованного двумя вырожденными полупроводниками: Рассчитаем, чему равна геометрическая ширина вырожденного p-n перехода. Будем считать, что при этом сохраняется несимметричность p-n перехода (p+ – более сильнолегированная область). Тогда ширина p+-n+ перехода мала: 2 s 0 2 0 W 2 s 0 E g qN D 2 1 10 qN D 12 1.6 10 19 1 6 ~ 10 ñì ~ 100 Å Дебройлевскую длину волны электрона оценим из простых соотношений: E 2 2 2 2m 2 kT ; 2 mkT h 2 1 h 2 mkT 2 9,1 10 31 1, 38 10 6, 3 10 34 23 300 ~ 140 Å Таким образом, геометрическая ширина p+-n+ перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+-n+ переходе можно ожидать проявления квантовомеханических эффектов, одним из которых является туннелирование через потенциальный барьер. При узком барьере вероятность туннельного просачивания через барьер отлична от нуля. Обращенный диод – это туннельный диод без участка с отрицательным дифференциальным сопротивлением. Высокая нелинейность вольтамперной характеристики при малых напряжениях вблизи нуля (порядка микровольт) позволяет использовать этот диод для детектирования слабых сигналов в СВЧ-диапазоне. Вольт-амперная характеристика германиевого обращенного диода а) полная ВАХ; б) обратный участок ВАХ при разных температурах

Слайд 2

Область применения

Основным свойством диода является то, что он хорошо пропускает ток в одну сторону, но почти не пропускает ток в другую сторону. С помощью нескольких диодов можно преобразовать переменный ток в постоянный, на котором работают большинство компактных электронных устройств

Слайд 3

Устройство диода

Диод представляет собой пластинку германия (c проводимостью p-типа) и индия (n – типа)

Слайд 5

Принцип работы

Таким образом, если к аноду (+) приложить положительное напряжение, а к катоду (-) ток будет легко проходить. Такое подключение называется положительным включением диода. При обратном включении диода (т.е. если к аноду (-), а к катоду (+) ток проходить не будет.

Слайд 7

Плоскостной диод Нетрудно видеть, что у такого диода площадь p-n перехода намного больше, чем у точечного. У мощных диодов эта площадь может достигать до 100 и более квадратных миллиметров, поэтому их прямой ток намного больше, чем у точечных. Именно плоскостные диоды используются в выпрямителях, работающих на низких частотах, как правило, не свыше нескольких десятков килогерц.